ANNEXE 8 : COMPTES RENDUS DES AUDITIONS BILATÉRALES CONDUITES PAR LES RAPPORTEURS

I. AUDITIONS DU 25 OCTOBRE 2016

1. M. Stéphane Mallat, professeur à l'École normale supérieure (ENS), chercheur en mathématiques appliquées

Une véritable révolution est à l'oeuvre sous les effets produits par le développement du big data et de l'intelligence artificielle, dont les conséquences sont encore très mal perçues dans la société civile. À travers l'analyse de données, il est possible de faire des choses qui étaient, pour la plupart des scientifiques, inimaginables il y a cinq ou dix ans. Cette révolution résulte de la conjonction du regroupement de très nombreuses données dans des bases de données et des capacités de calcul qui ont connu une évolution algorithmique très importante .

Cette révolution a des conséquences énormes pour l'industrie française. Il y a eu, dans un premier temps, une forme de retard en France, l'industrie numérique s'étant essentiellement concentrée aux États-Unis d'Amérique, qui a de fait attiré de nombreux talents français. Il est donc nécessaire pour la France de rattraper son retard à l'amorçage, qui est classique, mais surtout de récupérer des talents au niveau industriel.

Au-delà de l'industrie, d'autres domaines sont concernés de manière cruciale par cette révolution. La grande difficulté pour la médecine est que les données ne sont pas disponibles. Cela soulève un paradoxe étrange : d'une part, toutes les données personnelles mises sur Internet sont librement à disposition pour des utilisations marketing et commerciales ; d'autre part, au niveau de la médecine, il est extrêmement difficile d'obtenir les données alors qu'il y aurait un impact sociétal extraordinairement bénéfique et important à les exploiter . Ce paradoxe s'explique, au niveau de la médecine, par des problèmes fondamentaux de confidentialité et de sécurité ; cependant, tout ce qui est commercial et financier est laissé libre et évolue très vite, alors que tout ce qui est médical n'avance pas, alors même que ce serait le domaine le plus bénéfique pour la société.

Il est également crucial de prendre en considération l'enjeu de régulation et de recherche d'équilibre dans l'utilisation des données. Les enjeux de protection de la vie privée sont extrêmement importants, et ils vont le devenir de plus en plus. Il est néanmoins nécessaire d'équilibrer le rapport existant car il ne faut pas empêcher le médical de se développer, le principe de précaution freinant grandement le domaine médical alors que tous les autres domaines évoluent très vite.

Les individus restent souvent sur la perception de l'intelligence artificielle des années 1980 qui était fondée sur une idée de règles et de logiques. L'intelligence telle qu'elle est construite actuellement relève davantage de l'ordre de l'analogique, qui consiste à des mises en relation entre des éléments analysés . Les problèmes complexes devant lesquels il est possible de se retrouver, que ce soient des problèmes de reconnaissance d'image, de son, de décisions politiques, sont des problèmes qui résultent de l'interaction d'énormément de variables. Ce ne sont pas des règles qui régissent ces variables ; c'est une forme d'agrégation progressive de ces variables qui amène vers la solution la plus probable, à l'image de signaux émis par des milliers d'indicateurs faibles dont l'agrégation permet d'obtenir une information forte. Il est de fait impossible de savoir pourquoi un système d'information a pris cette réponse ou décision plutôt qu'une autre. Les réponses des intelligences artificielles sont le résultat de l'agrégation d'énormément d'indicateurs ; c'est bien plus proche de l'analogie que de la logique et des règles.

L'intelligence artificielle est une opportunité pour la médecine, pour l'énergie, pour l'évaluation des politiques publiques, pour le développement d'innovations, etc. Cependant, la protection de la vie privée devra être défendue de manière intelligente, afin de ne pas bloquer les effets positifs apportés par l'intelligence artificielle . Néanmoins, la privauté et la liberté individuelle doivent être préservées. Par exemple, il est nécessaire d'éviter que des systèmes de prédiction totalement ouverts mettent les individus dans des cases et les empêchent d'en sortir, tout en encourageant l'ouverture des données à la médecine afin que cette dernière puisse progresser et se développer. Bien que l'introduction de nouveaux types de systèmes à intelligence artificielle implique nécessairement une prise de faible risque, les bénéfices qui en seront retirés au niveau médical sont considérables. Un équilibre juste et bénéfique doit donc être trouvé.

Du côté industriel, une difficulté tend à émerger au niveau national et européen étant donné le fait qu'il n'existe aucun acteur majeur qui stocke Internet. Les individus et acteurs de l'économie sont conscients de l'ampleur de la révolution numérique, et l'enjeu sera d'avoir des champions industriels. L'absence d'acteurs français et européens provoque une fuite des cerveaux et des chercheurs vers les États-Unis d'Amérique. La recherche est d'abord valorisée par le tissu de petites start-up dynamiques qui commencent à émerger en France ; celles-ci se font cependant rapidement racheter par des acteurs nord-américains lorsqu'elles émergent. Il est donc essentiel qu'une politique industrielle aide à l'émergence de géants industriels dans ce domaine afin qu'ils puissent absorber la technologie. Les grandes entreprises du numérique, telles que Huawei ou Facebook, s'installant à Paris, parviennent à capter tous les talents français en particulier car il n'y a pas de plus grosse concurrence au niveau national.

2. M. Patrick Albert, entrepreneur (créateur de ILOG), chercheur et pionnier dans le domaine de l'intelligence artificielle

La France dispose d'un écosystème très favorable à l'émergence de jeunes pousses du numérique, notamment grâce au crédit d'impôt recherche, les pôles de compétitivité, les formations et écoles de l'enseignement supérieur, les sociétés d'accélération du transfert de technologies, les incubateurs d'entreprises, etc. Depuis quelques années, il s'est opéré un changement de discours, de communication et d'appréciation sur l'innovation, ainsi que des outils mis à disposition des entrepreneurs, pour favoriser le développement de l'économie numérique en France.

L'accélération du développement de l'intelligence artificielle s'est faite en trois vagues . La première vague correspond à l'apparition des systèmes experts , qui sont des logiciels de production des raisonnements et réponses à partir de règles et de faits. Cependant, l'informatique n'était pas prête pour ces systèmes, car ces derniers étaient très complexes.

Au cours des années 2000, un renouveau s'est opéré avec la simplification des systèmes experts, qui sont devenus accessibles et donc commercialisables et utilisables . Cette vague d'automatisation des décisions est arrivée à maturité à la fin des années 2000, et a donné lieu à de nombreuses acquisitions. Ce sont principalement des sociétés de B2B 80 ( * ) , telles qu'IBM ou Oracle, qui ont acheté des sociétés produisant des systèmes automatisés disposant d'un niveau d'intelligence artificielle « symbolique », c'est-à-dire assez simple, ainsi que des logiciels d'optimisation, aux algorithmes plus complexes, qui permettent de prendre des décisions tirant le meilleur parti des ressources à disposition.

Les industries qui se sont « mondialisées » précocement ont eu une pression de compétition féroce, et ont donc dû baisser leurs coûts. Ces industries, notamment dans les transports, ont de fait eu recours à ce type de logiciels afin de faire face à la concurrence en utilisant des techniques de lean management 81 ( * ).

La troisième vague a été l'avènement de l'apprentissage automatique ( machine learning ). Les résultats des recherches en apprentissage automatique, après leur publication, ont été reçus très positivement par le grand public. Le cas du développement de la voiture autonome s'inscrit dans cette perspective : le grand public comprend son fonctionnement, son intérêt et ses enjeux notamment en matière de sécurité, mais également les dilemmes éthiques que l'utilisation de véhicules autonomes pose.

La quatrième vague pourrait être celle des agents intelligents, en particulier grâce à l'Internet des objets . Cette quatrième vague pourrait être favorisée par le développement de l'intelligence en essaim ( swarm intelligence ), dont les méthodes se fondent sur les modèles de colonie de fourmis ou d'essaims d'abeilles grâce auxquels des agents peu doués individuellement parviennent collectivement et en s'organisant à des résultats extraordinaires. Cette quatrième vague incarne un besoin d'automatisation des actions sur Internet , à l'image de l'apparition de nombreux agents conversationnels ( chatbot) sur les sites Internet marchands, intervenant lors de l'acte de vente ainsi qu'en support.

L'enjeu, pour les parlementaires, est la réglementation de l'intelligence artificielle , en prenant en compte les problèmes sociaux et sociétaux qui risquent d'être critiques. La maîtrise de l'intelligence artificielle a la même envergure stratégique pour la souveraineté nationale que la maîtrise de l'atome l'était après-guerre. Cependant, l'intervention du politique est également essentielle pour que les bouleversements économiques et technologiques déclenchés par l'intelligence artificielle n'aboutissent pas à des crises sociales fortes, comme ce fut le cas au début de la première révolution industrielle. L'intelligence artificielle provoque une restructuration majeure de la création de valeur, profitant en premier lieu à ceux qui sauront maîtriser l'intelligence artificielle.


* 80 En anglais : business to business . Ce terme désigne l'ensemble des activités commerciales nouées entre deux entreprises.

* 81 Méthode de management qui vise l'amélioration des performances de l'entreprise recherchant les conditions idéales de fonctionnement de manière à ajouter de la valeur avec le moins de gaspillage possible.

Les thèmes associés à ce dossier

Page mise à jour le

Partager cette page